T0-Theory: Redshift Mechanism

Wavelength-Dependent Redshift without Distance Assumptions

Based on T0-Theory Framework Spectroscopic Tests using Cosmic Object Masses

July 25, 2025

Abstract

The T0-model explains cosmological redshift through ξ -field energy loss during photon propagation, without requiring spatial expansion or distance measurements. This mechanism predicts wavelength-dependent redshift $z \propto \lambda$ that can be tested with spectroscopic observations of cosmic objects. Using the universal constant $\xi = \frac{4}{3} \times 10^{-4}$ and measured masses of astronomical objects, the theory provides model-independent tests distinguishable from standard cosmology.

Contents

1	Fun	Fundamental ξ -Field Energy Loss			
	1.1	Basic Mechanism	2		
	1.2	Energy-to-Wavelength Conversion			
2	Rec	Ishift Formula Derivation	2		
	2.1	Integration for Small ξ -Effects	2		
	2.2	Redshift Definition and Formula	٠		
3	Free		3		
	3.1	Frequency Energy Loss	3		
	3.2	Frequency Redshift Formula	3		
4	Observable Predictions Without Distance Assumptions				
	4.1	Spectral Line Ratios	4		
	4.2	Frequency-Dependent Effects	4		
5	Ma	ss-Based Energy Scale Calibration	Ę		
	5.1	Using Known Cosmic Object Masses	١		
	5.2	Mass-Energy Relation in ξ -Field			
6	Exp	perimental Tests Using Spectroscopy	Ę		
	6.1	Multi-Wavelength Observations	١		
	6.2	Radio vs. Optical Redshift			
	6.3				

7	Advantages Over Standard Cosmology					
	7.1	Model-Independent Approach				
	7.2	Testable Predictions				
8	Observational Strategy					
	8.1	Target Selection				
		Data Analysis Protocol				
		Required Precision				
9	Conclusion					
	9.1	Summary of T0-Redshift Mechanism				
	9.2	Experimental Accessibility				
		Revolutionary Implications				

1 Fundamental ξ -Field Energy Loss

1.1 Basic Mechanism

Principle 1 (ξ -Field Photon Interaction). Photons lose energy through interaction with the universal ξ -field during propagation:

$$\frac{dE}{dx} = -\xi \cdot f\left(\frac{E}{E_{\varepsilon}}\right) \cdot E \tag{1}$$

where $\xi = \frac{4}{3} \times 10^{-4}$ is the universal geometric constant and $E_{\xi} = \frac{1}{\xi} = 7500$ (natural units).

The coupling function $f(E/E_{\xi})$ is dimensionless and describes the energy-dependent interaction strength. For the linear coupling case:

$$f\left(\frac{E}{E_{\xi}}\right) = \frac{E}{E_{\xi}} \tag{2}$$

This yields the simplified energy loss equation:

$$\frac{dE}{dx} = -\frac{\xi E^2}{E_{\mathcal{E}}}\tag{3}$$

1.2 Energy-to-Wavelength Conversion

Since $E = \frac{hc}{\lambda}$ (or $E = \frac{1}{\lambda}$ in natural units), we can express the energy loss in terms of wavelength. Substituting $E = \frac{1}{\lambda}$:

$$\frac{d(1/\lambda)}{dx} = -\frac{\xi}{E_{\mathcal{E}}} \cdot \frac{1}{\lambda^2} \tag{4}$$

Rearranging to find the wavelength evolution:

$$\frac{d\lambda}{dx} = \frac{\xi\lambda^2}{E_{\xi}} \tag{5}$$

2 Redshift Formula Derivation

2.1 Integration for Small ξ -Effects

For the wavelength evolution equation:

$$\frac{d\lambda}{dx} = \frac{\xi \lambda^2}{E_{\varepsilon}} \tag{6}$$

Separating variables and integrating:

$$\int_{\lambda_0}^{\lambda} \frac{d\lambda'}{\lambda'^2} = \frac{\xi}{E_{\xi}} \int_0^x dx' \tag{7}$$

This yields:

$$\frac{1}{\lambda_0} - \frac{1}{\lambda} = \frac{\xi x}{E_{\mathcal{E}}} \tag{8}$$

Solving for the observed wavelength:

$$\lambda = \frac{\lambda_0}{1 - \frac{\xi x \lambda_0}{E_{\mathcal{E}}}} \tag{9}$$

2.2 Redshift Definition and Formula

T0-Prediction

Redshift Definition:

$$z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}} = \frac{\lambda}{\lambda_0} - 1$$
 (10)

For small ξ -effects where $\frac{\xi x \lambda_0}{E_{\xi}} \ll 1$, we can expand:

$$z \approx \frac{\xi x \lambda_0}{E_{\xi}} = \frac{\xi x}{E_{\xi}} \cdot \lambda_0 \tag{11}$$

Key Insight

Key T0-Prediction: Wavelength-Dependent Redshift

$$z(\lambda_0) = \frac{\xi x}{E_{\xi}} \cdot \lambda_0 \tag{12}$$

This is the fundamental prediction of T0-theory: Redshift is proportional to the emitted wavelength!

3 Frequency-Based Formulation

3.1 Frequency Energy Loss

Since $E = h\nu$, the energy loss equation becomes:

$$\frac{d(h\nu)}{dx} = -\frac{\xi(h\nu)^2}{E_{\mathcal{E}}}\tag{13}$$

Simplifying:

$$\frac{d\nu}{dx} = -\frac{\xi h\nu^2}{E_{\varepsilon}} \tag{14}$$

3.2 Frequency Redshift Formula

Integrating the frequency evolution:

$$\int_{\nu_0}^{\nu} \frac{d\nu'}{\nu'^2} = -\frac{\xi h}{E_{\xi}} \int_0^x dx' \tag{15}$$

This yields:

$$\frac{1}{\nu} - \frac{1}{\nu_0} = \frac{\xi hx}{E_{\xi}} \tag{16}$$

Therefore:

$$\nu = \frac{\nu_0}{1 + \frac{\xi h x \nu_0}{E_{\xi}}} \tag{17}$$

T0-Prediction

Frequency Redshift:

$$z = \frac{\nu_0}{\nu} - 1 \approx \frac{\xi h x \nu_0}{E_{\xi}} \tag{18}$$

Key Insight

Since $\nu = \frac{c}{\lambda}$, we have $h\nu = \frac{hc}{\lambda}$, confirming:

$$z \propto \nu \propto \frac{1}{\lambda}$$
 (19)

Higher frequency photons show larger redshift!

4 Observable Predictions Without Distance Assumptions

4.1 Spectral Line Ratios

Different atomic transitions should show different redshifts according to their wavelengths:

$$\frac{z(\lambda_1)}{z(\lambda_2)} = \frac{\lambda_1}{\lambda_2} \tag{20}$$

Experimental Test

Hydrogen Line Test:

- Lyman- α (121.6 nm) vs. H α (656.3 nm)
- Predicted ratio: $\frac{z_{\text{Ly}\alpha}}{z_{\text{H}\alpha}} = \frac{121.6}{656.3} = 0.185$
- Standard cosmology predicts: 1.000

4.2 Frequency-Dependent Effects

For radio vs. optical observations of the same object:

$$\frac{z_{\text{radio}}}{z_{\text{optical}}} = \frac{\nu_{\text{radio}}}{\nu_{\text{optical}}} \tag{21}$$

Experimental Test

21cm vs. $H\alpha$ Test:

- 21cm hydrogen line: $\nu = 1420 \text{ MHz}$
- Optical H α line: $\nu = 457 \text{ THz}$
- Predicted ratio: $\frac{z_{21\text{cm}}}{z_{\text{H}\alpha}} = \frac{1.42 \times 10^9}{4.57 \times 10^{14}} = 3.1 \times 10^{-6}$

5 Mass-Based Energy Scale Calibration

5.1 Using Known Cosmic Object Masses

Instead of assuming distances, we use measured masses of cosmic objects to calibrate the energy scale:

Table 1: Well-Determined Cosmic Masses

Object Type	Example	Mass			
Stellar Masses (Precise)					
Sun	Sol	$1.989 \times 10^{30} \text{ kg}$			
Sirius A	Alpha CMa A	$2.02M_{\odot}$			
Alpha Centauri A	α Cen A	$1.1M_{\odot}$			
Galaxy Masses (Fr					
Milky Way	Our Galaxy	$10^{12}M_{\odot}$			
${ m Andromeda}$	M31	$1.5 \times 10^{12} M_{\odot}$			
Local Group	Total	$pprox 3 imes 10^{12} M_{\odot}$			

5.2 Mass-Energy Relation in ξ -Field

The characteristic energy scale is:

$$E_{\xi} = \xi^{-1} = \frac{3}{4 \times 10^{-4}} = 7500 \text{ (natural units)}$$
 (22)

Converting to conventional units:

$$E_{\xi} = 7500 \times (\hbar c) \approx 1.5 \text{ GeV}$$
 (23)

This energy scale is comparable to nuclear binding energies, suggesting the ξ -field couples to fundamental mass scales in cosmic structures.

6 Experimental Tests Using Spectroscopy

6.1 Multi-Wavelength Observations

Experimental Test

Simultaneous Multi-Band Spectroscopy:

- 1. Observe quasar/galaxy simultaneously in UV, optical, IR
- 2. Measure redshift from different spectral lines
- 3. Test if $z \propto \lambda$ relationship holds
- 4. Compare with standard cosmology prediction (z = constant)

6.2 Radio vs. Optical Redshift

Experimental Test

21cm vs. Optical Line Comparison:

- Radio surveys: ALFALFA, HIPASS (21cm redshifts)
- Optical surveys: SDSS, 2dF (H α , H β redshifts)
- Method: Compare objects observed in both surveys
- Prediction: $z_{21\text{cm}} \neq z_{\text{optical}}$ (T0) vs. $z_{21\text{cm}} = z_{\text{optical}}$ (Standard)

6.3 Expected Signal Strength

For typical cosmic objects with $\xi = \frac{4}{3} \times 10^{-4}$:

$$\frac{\Delta z}{z} = \frac{\lambda_1 - \lambda_2}{\lambda_{\text{avg}}} \times \xi \approx 10^{-4} \text{ to } 10^{-5}$$
 (24)

Key Insight

This wavelength effect is at the limit of current spectroscopic precision but potentially detectable with next-generation instruments like:

- Extremely Large Telescope (ELT)
- James Webb Space Telescope (JWST)
- Square Kilometre Array (SKA)

7 Advantages Over Standard Cosmology

7.1 Model-Independent Approach

Table 2: T0-Theory vs. Standard Cosmology

Aspect	Standard Cosmology	T0-Theory
Distance Requirement	$z \to d$ (via Hubble)	Direct spectroscopic test
Wavelength Dependence	$\frac{dz}{d\lambda} = 0$	$rac{dz}{d\lambda} \propto \xi$
Free Parameters	$\Omega_m, \widetilde{\Omega}_{\Lambda}, H_0, \dots$	Single parameter ξ
Exotic Components	Dark Energy (69%)	Only ξ -field
Testability	Indirect (via distance ladder)	Direct (spectroscopy)

7.2 Testable Predictions

T0-Prediction

Distinguishing Test:

Standard:
$$z_{\text{blue}} = z_{\text{red}}$$
 (25)

T0:
$$\frac{z_{\text{blue}}}{z_{\text{red}}} = \frac{\lambda_{\text{blue}}}{\lambda_{\text{red}}} < 1$$
 (26)

8 Observational Strategy

8.1 Target Selection

Focus on objects with:

- 1. Strong spectral lines across wide wavelength range
- 2. Well-determined masses from stellar/galactic dynamics
- 3. High signal-to-noise spectra available

Ideal targets:

- Bright quasars with broad spectral coverage
- Nearby galaxies with multiple emission lines
- Binary star systems with precise mass determinations

8.2 Data Analysis Protocol

Experimental Test

Analysis Steps:

- 1. Measure redshifts from multiple spectral lines
- 2. Plot z vs. λ for each object
- 3. Fit linear relationship: $z = \alpha \cdot \lambda + \beta$
- 4. Compare slope α with T0-prediction: $\alpha = \frac{\xi x}{E_{\xi}}$
- 5. Test against standard cosmology: $\alpha = 0$

8.3 Required Precision

To detect T0-effects with $\xi = \frac{4}{3} \times 10^{-4}$:

- Minimum precision needed: $\frac{\Delta z}{z}\approx 10^{-5}$
- Current best precision: $\frac{\Delta z}{z} \approx 10^{-4}$ (barely sufficient)
- Next-generation instruments: $\frac{\Delta z}{z} \approx 10^{-6}$ (clearly detectable)

9 Conclusion

9.1 Summary of T0-Redshift Mechanism

The T0-theory provides a **distance-independent** mechanism for cosmological redshift through ξ -field energy loss. The key features are:

- 1. Universal constant: $\xi = \frac{4}{3} \times 10^{-4}$ determines all redshift effects
- 2. Wavelength dependence: $z \propto \lambda$ (fundamental prediction)
- 3. Mass-based calibration: Uses measured cosmic object masses
- 4. Model-independent tests: Direct spectroscopic verification

9.2 Experimental Accessibility

The theory provides concrete, testable predictions:

T0-Prediction

Key Experimental Signature:

$$\left| \frac{z_{\text{blue}}}{z_{\text{red}}} = \frac{\lambda_{\text{blue}}}{\lambda_{\text{red}}} \neq 1 \right| \tag{27}$$

This prediction can be tested with:

- Multi-wavelength spectroscopy of the same objects
- Radio vs. optical redshift comparisons
- High-precision measurements of spectral line ratios

9.3 Revolutionary Implications

Key Insight

If confirmed, wavelength-dependent redshift would revolutionize our understanding of:

- Cosmic redshift origin: Energy loss vs. spatial expansion
- Distance measurements: Model-independent spectroscopic distances
- Dark energy: No longer required to explain cosmic acceleration
- Fundamental physics: New field interactions on cosmic scales

The T0-redshift mechanism offers a **testable alternative** to standard cosmology that can be verified through spectroscopic observations, making it experimentally accessible with current or near-future astronomical instruments.

References

- [1] Pascher, J. (2024). T0-Theory: Mathematical Equivalence Formulation. HTL Leonding, Department of Communications Engineering.
- [2] Planck Collaboration (2020). Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6.
- [3] SDSS Collaboration (2020). The Sloan Digital Sky Survey: Technical Summary. Astron. J. 120, 1579.
- [4] ALFALFA Team (2018). The Arecibo Legacy Fast ALFA Survey. Astrophys. J. Suppl. 232, 21.